Yli Jumala

The Book of the Sri Joakim, Sri Joakim Matias Gosvami Gautama Räikkönen Náráyáná Buddha, Ja Jumaluus Ylin Henkilöt!

Kimi Räikkönen Transcendent full name: Sri Joakim Matias Gosvámi Gautama Räikkönen Náráyáná Buddha Supreme Personality of Godhead!

SRI JOAKIM MATIAS GÓSVÁMI GAUTAMA RäIKKÖNEN NÁRÁYÁNA BUDDHA IS LORD OF THE UNIVERSE!

Sziddharta Gautama Buddha, Sri Joakim Räikkönen Buddha és Perlita

Translate

2013. május 1., szerda

V. Rész - A globális felmelegedés - Károsanyag kibocsátás és kémiai folyamatok


Gázkibocsátás és gázelnyelés 




Az üvegházhatást okozó gázok mennyiségének aránya. A függőleges tengely a sugárzási kényszerben mért változásokat mutatja.
A Napról hozzávetőleg 126 ezer TW energia érkezik a Földre, és a Föld is ennyit sugároz vissza a világűrbe. Az emberiség (világgazdaság) teljes primer energiafelhasználása 2000-ben 10,2 milliárd tonna olajegyenérték volt, ami 13,6 TW-nak felel meg, vagyis az emberi energiafelszabadítás a Föld teljes energiaforgalmának alig egytízezred része. Ebből világos, hogy a globális felmelegedés oka nem lehet csupán az erőművekben felszabadított energia. A sugárzási viszonyok változása mellett a légkörben megnőtt az üvegházgázok mennyisége. Ezt tartják a globális felmelegedés emberi okai közül a legfontosabbnak.
Az üvegházhatás lényege, hogy az üvegházgázok a légkörbe belépő, és zömmel a látható fény tartományába eső napsugarakat nem nyelik el, a földfelszínről visszavert, nagyobb hullámhosszú infravörös sugárzás egy részét viszont igen. Ez a hőenergia az alsó légrétegekben marad. Ahogy nő az üvegházgázok koncentrációja, úgy egyre kevesebb hő távozik a világűrbe, az alsó légkör és a földfelszín pedig egyre inkább felmelegszik. A legfontosabb üvegházgázok: a szén-dioxid (CO2), a metán (CH4), a dinitrogén-oxid (N2O), a kén-hexafluorid (SF6), a halogénezett szénhidrogének (CFC-k), és az alsólégköri (troposzferikus) ózon.

A kék görbe mutatja, hogy 417 000 év alatt soha nem lépte túl a légkör szén-dioxid-koncentrációja a 300 ppm értéket, azonban mint a piros görbén látszik, 1800-tól napjaink meredeken növekedett 380 ppm-ig. 




A légköri szén-dioxid-koncentrációt ábrázoló Keeling-görbe. A kisebbik grafikonon a szén-dioxid-koncentráció éves változása van feltüntetve. A mérések a Mauna Loa hegyen (Hawaii) készültek.
Szén-dioxid. Meteorológiai vizsgálatokból tudjuk, hogy a légkör szén-dioxid koncentrációja a 21. századelején 383 ppmv (térfogat-milliomod).[37] A geológusok kimutatták, hogy ez több, mint bármikor az előző 417 ezer évben. Bár a természet körfolyamataiban hozzávetőleg harmincszor annyi szén-dioxid keletkezik, mint az ember tevékenységéből, az ember által okozott szén-dioxid emisszió eléri a 20 milliárd köbmétert.
Ennek nagy része elsősorban a fosszilis tüzelőanyagok (kőolaj, földgáz, fekete- és barna kőszén, lignit) elégetése révén keletkezik. A kibocsátás további 15-20%-a a földterületek hasznosításában bekövetkező változásoknak, köztük az erdőirtásnak és fakitermelésnek tulajdonítható.[40] Kisebb mennyiségű szén-dioxid szabadul fel a cement gyártása során. Ugyancsak növeli a szén-dioxid szintjét a légiforgalom, ez példáulNémetországban 1980 és 1993 között megháromszorozódott. 1993-ban egyedül a német légiforgalom 19 millió tonna szén-dioxidot juttatott a légkörbe, ami a teljes német közlekedés szén-dioxid kibocsátásának 10%-át tette ki.
Az emberi tevékenység során légkörbe kerülő szén-dioxid-mennyiségnek csak a fele marad ott, a többi részben oldódik az óceánokban, részben a szárazföldi bioszférába kerül. A vegetáció, főként az északi félgömb mérsékelt égövi kontinentális területein, napjainkban nincs egyensúlyban a légkörrel, mert nettó szén-dioxid nyelőként viselkedik.
A szén-dioxid a természetes módon a légkörbe kerülő üvegházhatású gázok 9–26%-át jelenti, az emberi tevékenység miatti összes üvegházgáz-kibocsátásnak viszont mintegy 80%-át adja. Az IPCC 2001. évi helyzetjelentése szerint a világ szén-dioxid emissziójának – a főbb fogyasztói szektorok szerinti – megoszlása a következő: ipar: 43%, lakóépületek: 21%, egyéb épületek: 10%, közlekedés: 22%, mezőgazdaság: 4%.
Elsőként Charles Keeling klimatológus mérte meg a légköri szén-dioxid-koncentrációt a hawaii Mauna Loa hegy csúcsán az 1950-es években. Az eredményeket grafikonon ábrázolta, amit ma Keeling-görbének neveznek. A mérések 1958 és 2000 között folytak. A grafikonon megfigyelhető az ún. fűrészfog-effektus, aminek az északi félteke erdeiben zajló évszakos változás az oka. Az erdők ugyanis minden tavasszal hatalmas mennyiségű szén-dioxidot vonnak ki az atmoszférából, ami a Keeling-görbén a koncentráció visszaesésében jelenik meg. Az ősz beköszöntével növekszik a szén-dioxid koncentráció, ami a lebomlással jár együtt. A Keeling-görbe azonban másra is rámutat: minden ősz végén kicsivel több szén-dioxid marad a légkörben, mint amennyi előtte volt. Charles Keeling úgy vélte, hogy ez a folytonos emelkedés egyértelműen a fosszilis tüzelőanyagok elégetésének a következménye.
A szén-dioxid által előidézett üvegházhatás okát sokáig nem ismerték fel a klímakutatók. A szén-dioxid a 12 mikrométernél hosszabb hullámhosszú elektromágneses sugárzást képes elnyelni, és ebben a hullámhossz-tartományban a teljes abszorpcióhoz már igen kis mennyiségű gáz jelenléte is elegendő. A laboratóriumi kísérletekben a koncentráció növelésével úgy tűnt, hogy nincs valódi különbség az elnyelt hőmennyiségre vonatkozóan.[41] Ilyen eredmények mellett valószínűtlennek tartották, hogy a légkör összetételének kicsiny hányadát kitevő szén-dioxid hatással van a hőmérséklet növekedésére. A szén-dioxidot nem tekintették a klímaváltozásért egyedül felelősnek, hanem az általa megnövekedett vízpára általi pozitív visszacsatolási folyamatot tekintették a globális felmelegedés okának. Csak sokkal később ismerték fel a kutatók, hogy nagyon alacsony hőmérsékleten – mint például a sarkvidékeken vagy a magasabb légrétegekben – a hő vezetése éppen abban a hullámhossz-tartományban sokkal intenzívebb, ahol a szén-dioxid működése hatékonyabb.


A földfelszíni (felső ábra) és asztratoszférabeli (alsó ábra) metánkoncentrációkét számítógépes modellben
Metán. A metán döntő része a légkörben zajló kémiai folyamatok során először szén-monoxiddá, majd szén-dioxiddá alakul. Az így keletkező szén-dioxid mennyisége azonban elhanyagolható az egyéb emissziókhoz képest. A metán kis részét a talajban lévő mikroorganizmusok megkötik. E két folyamat azonban nem képes ellensúlyozni a természetes és mesterséges forrásokból eredő mennyiséget, ezért a metán légköri koncentrációja napjainkban folyamatosan emelkedik. 2007-ben a légköri metán mennyiségének 60%-át az ember állítja elő.
Leginkább hulladéklerakókból kerül a metán a levegőbe, de a szennyvízkezelés, a fosszilis tüzelőanyagok égetése, a rizstermesztés, az állattenyésztés (a hígtrágya valamint a kérődzők bendőjében lévő erjesztőbaktériumok jelentős metántermelők. Egy szarvasmarha napi 100 liter metánt böfög ki emésztési folyamata során. A szennyvízkezelés és bizonyos ipari tevékenységek (szénbányászat, szivárgó földgázvezetékek) is hozzájárulnak a kibocsátáshoz. Az emberi eredetű metánforrások egymás közötti arányai a következők: energiaipar: 18%, rizstermesztés: 28%, állattenyésztés: 22%, biomassza tüzelése: 20%, hulladékdepóniák: 12%. Az élő növényzet is termel bizonyos mennyiségű metánt. Egyes becslések szerint a szárazföldi növények esetében ez elérheti az évi 60-240 millió tonnát is, ami az éves légköri metántermelés 10-30%-át teszi ki. Ennek mintegy kétharmadát a trópusi területek adják, mivel ott képződik a legnagyobb mennyiségű biomassza. Az élő növényzet metántermelésénél lényegesen nagyobb az olvadó tundraövezet mocsári és tőzegláp-területeinek – eddig a permafroszt miatt minimális – jelentősen megnövekedett kibocsátása. Az olvadó területeken a metán mellett jelentős mennyiségű szén-dioxid is megjelenik, ezért olyan pozitív visszacsatolási folyamat alakulhat ki, amelynek egyik eleme a felmelegedést segítő gázok megnövekedése, aminek hatására újabb területek olvadhatnak meg, jelentősen növelve ezzel az üvegházhatású gázok légköri koncentrációját. Ilyen folyamat játszódhat le például a szibériai örök fagytőzeg-mocsarak megolvadásakor, aminek során akár 70 000 millió tonna metán is a légkörbe kerülhet. A metánkibocsátás csökkentésére tett első lépések egyike, hogy a mezőgazdaságban megkezdődött a depónia és a biogáz nagyarányú hasznosítása.
Dinitrogén-oxid. A dinitrogén-oxid (N2O) légköri koncentrációja még a metánénál is alacsonyabb, de mivel hatékonyan nyeli el a földfelszín infravörös sugárzását, szintén fontos üvegházgáz. Legnagyobb mértékben természetes forrásból, a denitrifikációból származik. Ezt a forrást az ember felerősítette a légköri nitrogént megkötő haszonnövények termesztésénél használt nitrogéntartalmú műtrágya alkalmazásával. A műtrágyagyártáson kívül fontos dinitrogén-oxid források még a műanyagipar, a salétromsavgyártás, valamint a fosszilis tüzelőanyagok és mezőgazdasági hulladékok égetése. Bár a légkör magasabb részébe kerülő dinitrogén-oxid elbomlik azultraibolya sugarak hatására, a folyamat nem képes egyensúlyozni a jelenlegi évi 16 millió tonnás emissziót.


A CFC-12 és a CFC-11 gázok légköri koncentrációja. A függőleges tengelyen a CFC-gáz légköri koncentrációja van feltüntetve ppbv-egységben.
Halogénezett szénhidrogének (CFC-k). Ezek közé a vegyületek közé tartoznak például a CHF3 és a CF3CH2F. Ezeket a gázokat az 1930-as években kezdték gyártani, többek között hűtő és légkondicionáló berendezésekhez. Később oldószerként az elektronikai iparban, habosítóanyagként és aeroszolos spray-k hajtógázaként hasznosították őket. Felmelegedést okozó hatásuk több ezerszerese a szén-dioxidénak. Széles körű használatuk magyarázata, hogy nincsenek hatással az emberi egészségre, mert ezek a gázok közömbösek, nem lépnek reakcióba semmilyen természetes vegyülettel. Ez az oka, hogy hosszú ideig tartózkodnak a légkörben: annak ellenére, hogy már kivonták a forgalomból ezeket a gázokat, még évezredekig ott lesznek a levegőben.
Kén-hexafluorid. A kén-hexafluorid (SF6) a polifluoroalkil (PFC) és a részlegesen fluorozott szénhidrogének (HFC) – melyek a klór-fluor-karbon vegyületeket (CFC) hivatottak helyettesíteni – gyártása során keletkezik.
Ózon. Az ózon nem csak az ultraibolya tartományban képes elnyelni a fotonokat, hanem az infravörösben is. Következésképpen fontos üvegházhatású gázként viselkedhet. Közvetlen forrásai nincsenek, a sztratoszférában kémiai folyamatok során keletkezik oxigénbőlultraibolya sugárzás hatására. Míg az alacsonyabb légrétegekben (troposzféra) a nitrogén-monoxid, nitrogén-dioxid, szén-monoxid és a reaktív szénhidrogének napfény hatására bekövetkező kémiai folyamatokban képződik. Ezeket a gázokat indirekt üvegházhatású gázoknak is nevezik.
Az emberi eredetű üvegházhatású gázok légköri koncentrációja az 1990-es évekre elérte a valaha mért legmagasabb értéket, elsősorban a fosszilis tüzelőanyagok égetése, a mezőgazdasági tevékenységek, valamint a földhasználat átalakulása miatt. Az IPCC becslése szerint a levegőbe juttatott üvegházgázok 20%-a mezőgazdasági tevékenységek során szabadul fel, elsősorban a trágyázásnak, szarvasmarha-tenyésztésnek és rizstermelésnek tulajdonítható. További 14%-ért a földek hasznosításában bekövetkező változások a felelősek, például a növényzet kiirtása és elégetése. Ezek a változások legtöbbször új területek művelésbe vonásával járnak együtt.
Nagy bizonyossággal állítható, hogy a mesterséges eredetű gázok melegítenek. Az aeroszolok közvetlen hatása ugyan ellentétes, de ez a hatás kisebb mértékű az üvegházhatású gázok fűtő hatásánál.
Emberi eredetű aeroszolforrások. Az éghajlatot befolyásoló emberi hatások körébe tartoznak az emberi eredetű aeroszolok (por, korom, szulfátok) is, amelyek a napsugárzás egy részét visszaverik, illetve a magasabb légrétegekben elnyelik, ezáltal csökkentik a földfelszínre érkező sugárzásmennyiséget, s ily módon az üvegházhatással ellentétes hatást váltanak ki. Az emberi eredetű, elsősorban szulfát-aeroszolok ugyanakkor megváltoztathatják a felhőzet szerkezeti és sugárzás-átviteli jellemzőit is, ami közvetett módon ugyancsak klímaváltozáshoz vezet. A légköri aeroszoltartalmat a térfogati koncentráció, a kémiai összetétel, a részecskék alakja és méret szerinti eloszlása együttesen határozza meg. A légkör aeroszoltartalma elsősorban az iparosodott területeken és azok tágabb környezetéhen magas, így ezeken a területeken gyengítik a legerősebben az üvegházgázok okozta felmelegedést. Az aeroszoloknak azonban melegítő hatása is lehet, mivel egy részük elnyeli az infravörös sugarakat. Az aeroszolok légkörbe kerülésével közvetlenül összefüggő, direkt hatás (sugárzásszórás és -elnyelés) összességében hűtő hatású.
Természetes aeroszolforrások

A természetes aeroszolok nagy része elsődleges forrásokból, tehát közvetlenül jut a légkörbe. A sókristályok főleg az óceánokból származnak. A kontinenseken a sivatagokban a legtöbb az aeroszol – sivatagok a szárazföldek közel egyharmadát borítják. A bioaeroszolok közül a legjelentősebbek a pollenek, a spórák és a baktériumok. Az elsődleges aeroszolrészecskék közös jellemzője, hogy viszonylag nagyok (> 1 mikrométer).
A természetes aeroszolok kisebb része másodlagos forrásokból, azaz közvetetten kerül a légkörbe. Ezek magában a légkörben keletkeznek gázokból vagy illékony vegyületekből kémiai reakciók és a gázrészecskék átalakulása (kondenzáció) eredményeként. A legjelentősebb közülük a szulfátion, amely óceáni környezetben képződik az egyes algafajok által kibocsátott dimetil-szulfid fotokémiaioxidálódásával. A szervetlen aeroszolok közé tartozik még a természetes eredetű nitrogén-monoxidból ugyancsak kondenzálódással keletkező nitrátion.

 

Állattartás 

Az állattartás a korábbi becsléseknél többel járul hozzá a klímaváltozáshoz.
Az ENSZ Élelmezésügyi és Mezőgazdasági Szervezetének 2006-os számítása alapján a hús- és tejtermék célú állattartás a globális felmelegedés 18%-áért felelős. Azonban egyre világosabbá válik a tudósok előtt, hogy az állattartó ágazat ennél jelentősebb szerepet játszik.
Dr. Rajendra Pachaurinak, az ENSZ Éghajlatváltozási Kormányközi Testülete (IPCC) elnökének megjegyzése egy 2008 szeptemberben tartott előadás során a húsfogyasztás csökkentésének szerepéről a globális felmelegedés megfékezésében: „Mióta kitudódott, hogy ma itt előadást fogok tartani, számos e-mailt kaptam olyan emberektől, akiket tisztelek, amelyekben az áll, hogy a 18%-os adat alulbecslés; alacsony érték, és a valóságos adat sokkal magasabb.

 

Esőerdők irtása 

 



Tarvágásos erdőirtás Tanzániában
Az esőerdőket jelenleg óriási mértékben irtják, ami az üvegházhatás egyik fő okozója. Az őserdők égetéses irtása során az égéssel szén-dioxidtömeg jut a levegőbe. Amikor az erdőket kivágják és fölégetik, az elraktározott szén CO2 formájában kerül vissza a levegőbe. Az utóbbi 10-15 év során átlagosan évente 1 milliárd tonnával kerül több szén-dioxid a légkörbe. Az erdőirtás miatt keletkezett szén-dioxid mennyiségét a légkör teljes szén-dioxid mennyiségének egyharmadára becsülik. Az esőerdő fái a csapadékképzésben is fontos szerepet játszanak, ugyanis a gyökereiken keresztül magukba szívott talajvizet folyamatosan párologtatják, és az ebből keletkező esőfelhők az egész Földön szétterülnek, például még Észak-Európa fölé is eljutnak. Az esőerdők irtásával a nekik köszönhető csapadék- és felhőképződés is elvész a Föld számára, ami tovább növeli az üvegházhatást.
Amazonasi esõerdõ 55%-a elpusztulhat 2030-ra a mezõgazdaság, az állatarás növekedése, erdõtüzek, a szárazság és a fakitermelés jelenlegi üteme alapján. Az erdõk eltûnése miatt az Amazonas-medencébõl 55-97 milliárd tonna szén-dioxid juthat a légkörbe. A felsõ érték esetén ez több mint a világ kétévi üvegházhatású gáz kibocsátása.
Brazília az USA után a második legnagyobb szójatermelõ a világon. A legnépesebb latin-amerikai országban a szarvasmarha-tenyésztés is robbanásszerûen bõvül. Hatalmas erdõterületeket égetnek fel nap mint nap, hogy ültetvényekké vagy marhalegelõkké alakítsák õket. A letarolt erdõterületet általában elõször marhalegelõnek használják, majd szójával vetik be.
Az erdõégetés adja az ország összes üvegházhatású gáz kibocsátásának háromnegyedét - derült ki a közelmúltban egy a brazil kormány által sokáig visszatartott jelentésbõl. Ezzel a dél-amerikai állam a világ legnagyobb légszennyezõinek sorába lépett. Kétszer annyi szén-dioxidot bocsátanak ki, mint az Amazonas-medence területén található összes többi ország - Peru, Bolívia, Kolumbia, Ecuador - együttvéve. Az éghajlatváltozás következtében tapasztalható csapadékcsökkenés és rendkívüli szárazságok miatt pedig egyre gyakoribbak az erdõtüzek, tovább növelve az erdõpusztulást.
Csak 2007 augusztusa és decembere között 3,2 ezer négyzetkilométer tûnt el a Föld tüdejének tartott õserdõbõl - állítja Gilberto Camara, az Amazonas kiterjedését mûholdak segítségével mérõ brazil Nemzeti Ûrkutatási Hivatal (INPE) vezetõje.
A fakitermelés, felégetés miatt a régió éghajlata egyre szárazabb, növekszik a hõmérséklet, és csökken a csapadékmennyiség. Az amazóniai esõerdõk klímaváltozásának, a terület feletti vízgõzmennyiség csökkenésének, és a felhõképzõdés megváltozásának globális hatásai vannak.
Az erdõirtás a fakitermelés, a mezõgazdasági területek növelése, az urbanizáció növekedése miatt világszerte gyorsul. A trópusi esõerdõk égetése nemcsak az adott területen vezet ökológiai katasztrófához, hanem a felszabaduló szén-dioxid nagyban hozzájárul a globális felmelegedési válsághoz.
A világméretû ökológiai katasztrófa elkerülése érdekében le kellene állítani a további erdõirtást. 

 

Ózonkoncentráció csökkenése 

Az ózonkoncentráció csökkenése közvetett hatással van a globális felmelegedésre. Az ózonmennyiség csökkenése ugyanis pozitív visszacsatolásokat eredményez a következő folyamatok segítségével:
1. A légkör alsóbb rétegeinek melegedésével párhuzamosan a sztratoszférában lehűlés megy végbe. Amikor a napfény nélküli sarki teleken a hőmérséklet a legmélyebbre süllyed, a száraz sztratoszférában a vízpárából felhők képződnek. Ezekben a felhőkben felhalmozódnak a CFC-gázokból származó klórvegyületek. Az ilyen vegyületekből tavasszal, a napsugárzás hatására felszabaduló instabil klóratomok a sarki nyár ideje alatt folyamatosan bontják az ózonmolekulákat. Ugyanígy a halonokból és a metil-bromidból származó bróm is romboló hatást fejthet ki.
2. Az ózonkoncentráció csökkenése miatt az UV-sugarak nagyobb intenzitással jutnak a troposzférába, ennek hatására olyan, a tengerfelszín közelében élő mikroszkopikus egysejtű növények pusztulása következhet be, amelyek az óceáni tápláléklánc alapját képezik. A tengerek planktonja így kevesebb szén-dioxidot tud kivonni a légkörből, (emellett megbomlik a tengeri tápláléklánc).
Az ózonkoncentráció csökkenéséért a légkörbe kerülő atomos klór, fluor és bróm a felelősek. Ezek az elemek főként a klórt és fluort tartalmazó gyorsan elpárolgó szénvegyületekkel, fluorkarbonokkal (CFC és HFC) kerülnek a levegőbe. A vegyületek a sztratoszférába feljutva az ultraibolya sugarak hatására elbomlanak, így felszabadulnak belőlük az ózonrétegre veszélyes elemek, amelyek gyorsítják az ózonbomlását.
Az ózonkoncentráció azonban természetes úton is folyton változik, és a jelenlegi antarktiszi „ózonlyuk” koncentrációja még mindig magasabb, mint a 19. század bármely pillanatának ózonkoncentrációja.

Légköri kémiai folyamatok 

A légkörben zajló kémiai folyamatokban kitüntetett szerepe van a hidroxilgyöknek, ami szinte valamennyi anyag oxidációs folyamatában részt vesz: oxidálja a metánt, a szén-monoxidot szén-dioxiddá alakítja. Emiatt a szén-monoxid-kibocsátás növekedésével lassul a metán oxidációja, légköri felhalmozódása pedig felgyorsul. A szén-monoxid-emisszió csökkenése kedvező hatást gyakorol a metánkoncentráció alakulására. A hidroxilgyök az előbbieken kívül még számos reakcióban részt vesz, így a folyamatok vizsgálata csak bonyolult matematikai modellezéssel lehetséges.

V. Rész - A globális felmelegedés - Geológiai okok


Geológiai okok 

A kontinensek vándorlása 

A kontinensek vándorlását a Föld köpenyében a belső hőtermelés miatt kialakuló kőzetáramlások okozzák. A hőtermelésért részben a magban és köpenyben levő atomok raioaktív bomlása, részben a Nap és a Hold okozta árapályjelenség felelős, amely nemcsak a tenger vizében kelt hullámokat, hanem a köpenyben is alakváltozásokat, belső súrlódást és így végső soron hőt. A kontinensek elhelyezkedése jelentősen befolyásolja a Föld átlaghőmérsékletét. Ha egyetlen nagy kontinens jön létre, akkor a szárazföld belseje forróbb, szárazabb, sivatagosabb. Ha sok kontinens van, közötte óceánokkal tengerekkel, akkor összetetteb vízkörzés és légkörzés alakulhat ki, amely enyhítiti az egyenlítők és a sarkvidékek közötti, illetve a szárazföldek és tengerek feletti hőmérsékletkülönbségeket. Ha a sarkvidéken kontinens vagy nagyobb szigetek találhatók, akkor nagyobb lesz az eljegesedés, ami a Föld átlaghőmérsékletét is csökkenti.
A lemeztektonika az egyik oka ugyanakkor a vulkánosság kialakulásának is, ami szintén befolyásolja az éghajlatot.

Vulkáni tevékenység 



A globális felmelegedést visszájára fordító természeti okok közül a legjelentősebb a vulkáni tevékenység. A tűzhányók kitörésekor nagy mennyiségű vulkáni hamu, por és kén-dioxid jut a troposzférába. A por és a hamu idővel leülepszik, vagy az esők kimossák a légkörből, a kén-dioxid viszont a levegőben marad, és szétterülve megszűri a napsugarakat, csökkentve ezzel a földfelszín hőmérsékletét.
A vulkánok – beleértve a tenger alatti vulkanizmust is – éves széndioxid kibocsátása 65–319 megatonnára tehető. 

Óceáni vízkörzés 

Wallace S. Broecker 1987-ben felvetette, hogy az elmúlt százezer évben lezajlott éghajlati változásokért az óceáni vízkörzés valamely ágának átváltódásai felelősek. Elmélete szerint a hőmérséklet nagy ingadozásait az okozhatta, hogy akkoriban az óceáni szállítószalag két állapot között ingadozott. Az egyik ilyen állapotban rendben folyt a hő szállítása az észak-atlanti térségbe, a másikban viszont legyengült, leállt a cirkuláció, aminek következtében erősen csökkent ezen térség teljes hőbevétele. Ez a hipotézis összhangban van a grönlandi jégmintákból nyert azon adatokkal, melyek a hőmérséklet ingadozására vonatkoznak.

V. Rész - A globális felmelegedés - Csillagászati okok


Csillagászati okok

A napciklus




A napfoltok száma, a földfelszín hőmérséklete és a légkör szén-dioxid-koncentrációja. A vörös görbe a hőmérséklet változása Celsius-fokban, a sárga a napfoltok száma, a kék pedig a légkör szén-dioxid koncentrációja ppmv-ben. Utóbbit a hatvanas évekig tengerszinten, majd később a Mauna Loa hegyen (Hawaii) mérték.
A Föld éghajlatát befolyásolja a napsugárzás, a napállandó, valamint az, hogyan hasznosul a beérkező energia a földi szférákban. Ha ezek bármelyike megváltozik, akkor változik a Föld energiamérlege és ezzel éghajlata is.
A megfigyelhető napfoltok száma és intenzitása változó, elhelyezkedésük egyenetlen; a változás ciklusa 11,2 éves. A napciklus minimumán csak néhány napfolt látható, sőt, időnként egy sem. Később az Egyenlítő két oldalán szimmetrikusan, magas szélességi körökön jelennek meg, és az Egyenlítő felé vándorolnak, miközben újabbak alakulnak ki. A napfoltok általában párokban jelennek meg a két féltekén, és környezetükben ellentétes a mágneses töltés előjele. A legtöbb napfolt a napciklus végén, az északi és déli mágneses pólus felcserélődésekor látható. A 11 éves, rövid periódusú cikluson kívül ismerünk egy hosszabb, 72-82,5 év között változó hosszú ciklust is. Archív adatokból arra következtettek, hogy ez a ciklus 1784 és 1867 között volt a leghosszabb (82,5 éves), az azóta kimutatott hét periódus egyre rövidebb.
Elsőként Knud Lassen (Dán Meteorológiai Intézet) hívta fel a figyelmet arra, hogy a napfolttevékenység ciklusa a jelek szerint szinkronban van a globális hőmérséklet változásával. (A napfolttevékenység intenzitását az elmúlt 1000 évre az antarktiszi és a grönlandi jégmintákberillium-10 izotóp-tartalmából becsülik.) Elméletét más tudósok is próbálták alátámasztani, az 1970-es években a Nap aktivitásának megfigyeléséből kiindulva próbálták magyarázni a globális felmelegedést.  Knud Lassen azonban 2000-ben beismerte, hogy az eredetileg őáltala felállított hipotézisnek vannak gyenge pontjai, s az Európai Geofizikai Társaság kongresszusán bejelentette, hogy az 1980 óta végbement drámai hőmérséklet-növekedés már szerinte sem magyarázható a napfoltokkal és a napfolttevékenység ciklusaival.  Az IPCC szintén behatóan tanulmányozta a naptevékenységet, és arra a következtetésre jutott, hogy bár a XX. század első felében valamelyest nőtt a szoláris besugárzás mértéke, ez önmagában nem ad magyarázatot a tapasztalt hőmérséklet-emelkedésre.
Ismert a napfoltoknak egy körülbelül 1500 éves ciklusa (Bond-események), melynek hatása van a Föld éghajlatára. S. Frederick Singeramerikai éghajlatkutató szerint a napfolttevékenység erősödése okozza a Föld éghajlatának felmelegedését.

A napállandó változása 

A mérésekből kiderült, hogy a napállandó értéke időben változik, fluktuációja néhány tized Wm−2 értékű növekedést mutat. Erre több tudományos magyarázat is született. 1. A Nap energiasugárzása évmilliókban mérhető időskálán növekszik. 2. A Nap – életének egy korábbi szakaszában – kozmikus porfelhőn haladt keresztül, amely akár évmilliókig is eltarthatott, és időszakosan a napállandó értéke kisebb is volt a mainál. A napállandó értékében történő 1%-os csökkenés hatása a földfelszín átlaghőmérsékletének akár 0,7-0,8 °C-os csökkenését is maga után vonhatja.

A Föld pályaelemeinek nagy léptékű változása

Ezt az elméletet Milutyin Milankovity szerb meteorológus dolgozta ki az 1920-as években. Az elmélet lényege, hogy a Föld pályaelemei változást mutatnak: az excentricitás 100 és 410 ezer éves periódusokkal változik, a földtengely és a pálya által bezárt szög 41 ezer éves periódussal változik, ezen kívül a Nap és a Hold tömegvonzásából, valamint a Föld lapultságából eredő precesszió 21 ezer éves ciklust mutat. Ezek a változások hatással vannak a napsugárzás földfelszíni eloszlására. Ennek az elméletnek súlyos hiányossága azonban, hogy figyelmen kívül hagyja az üvegházhatást előidéző szén-dioxid légköri koncentrációjának csökkenését, következésképpen nem ad kielégítő magyarázatot a jégkorszakok létrejöttére. Emellett a földtörténet legnagyobb részén nem igazolható a Föld pályaelemeinek változásai és az éghajlat közötti összefüggés.

 

Felmelegedési spirál, visszacsatolások 



A Kilimandzsáró jégsapkájának visszahúzódása 1993 és 2000 között
A felmelegedési spirált a pozitív visszacsatolások okozzák. A legfontosabb ilyen folyamatok:
§                    A légkör megnövekedett szén-dioxid-koncentrációja az üvegházhatás miatt közvetlenül felfűti a levegőt, ami magasabb hőmérsékleten több vízpárát vesz fel. Ezzel növekszik a hőelnyelés mértéke is, ami a vízpára további felvételét idézi elő.
§                    A tengervíz és a fölötte elhelyezkedő légrétegek felmelegedésével fokozódhat a párolgás, vagyis nőhet a légkör vízgőztartalma. A vízgőz a leghatékonyabb természetes üvegházgáz. Ha az üvegházgáz légköri koncentrációja nő, felmelegedés következik be, aminek közvetett következményeként nő a légköri páratartalom és ezzel együtt tovább erősödik az üvegházhatás. Frank Wentz fizikus szerint ez a visszacsatolás már megkezdődött: a légköri vízgőz-koncentráció az 1990-es években 2%-kal nőtt. A légrétegek megnövekedett vízgőztartalma ugyanakkor negatív visszacsatolást is kiválthat. A felhők elnyelik az infravörös sugárzást és az elnyelt mennyiség arányában fejtenek ki melegítő hatást. Ugyanakkor visszatükrözik a napfény egy részét, így nagy mennyiségük gátolja a felmelegedést. A vízgőz okozta visszacsatolás mértékét nehéz megállapítani, mivel a vízgőz – ellentétben a szén-dioxiddal – nem egyenletesen oszlik el a levegőben. A vízgőz (felhők formájában) a visszacsatolási folyamaton kívül fontos szerepet játszik a sugárzásegyenlegkialakításában. A nappali Föld felszínének közel felét árnyékoló felhők a napsugárzás több, mint ötödét verik vissza, mérsékelve a felmelegedést.
§                    A légkörben megnövekedett szén-dioxid-mennyiség felmelegíti a Föld felszínét, megolvasztja a jégtömböket. A jég fehér felületként veri vissza a Napsugarait, és ahogy olvad, helyét a hőt lényegesen jobban elnyelő tenger vagy szárazföld foglalja el. Ettől gyorsabban olvadnak a jégfelületek, és öngerjesztő folyamat alakul ki.
§                    A szén-dioxid koncentrációjának növekedése a talaj hőelnyelő képességére is hat. A talajban a szén igen finom egyensúlyban raktározódik, és már a hőmérséklet egy kis változása is elég ahhoz, hogy a talaj elkezdje kibocsátani a korábban elnyelt szén-dioxidot. Alacsonyabb hőmérsékleten lassabb abakteriális bomlás, és az elhalt növényi részek széntartalma felhalmozódik a talajban. Ahogy a talaj felmelegszik, gyorsul a lebontás, és szén-dioxid jut vissza a légkörbe.
§                    A szén-dioxid koncentrációjának növekedése fokozza az esőerdőkben a növények kilégzését (a transpirációt). Amikor a növények kinyitják a leveleiken elhelyezkedő légzőnyílásokat (sztómákat), elpárologtatják víztartalmuk egy részét. A sztómák kinyitásával jutnak hozzá a légköri szén-dioxidhoz, és ezt a „kaput” pont addig hagyják nyitva, ameddig szükséges. Ha nő a légkörben a szén-dioxid mennyisége, az esőerdők növényei az átlagosnál tovább tartják zárva sztómáikat és ezért kevesebb vízpárát lélegeznek ki, ami egyesek szerint csökkenti a csapadék mennyiségét.
§                    Egy másik pozitív visszacsatolási folyamat során a globális felmelegedés hatására a metán-hidrátból metán szabadulhat fel. A metán-hidrát szilárd anyag, de instabil elegy, amely alacsony hőmérsékleten képződik a tengerek mélyén, a tengervíz keltette nagy nyomás alatt. A metán-hidrát létrejöttének alapvető feltétele a kellően vastag üledékréteg, amelyben a metán keletkezik. Ha ez az anyag kiszabadul a tengervíz nyomása alól, közvetlenül szublimál és szétoszlik a levegőben, üvegházhatást okozva gyorsítja a globális felmelegedés folyamatát.
További fontos visszacsatolási folyamatok:
§                    Az El Niño jelenség és a légköri szén-dioxid koncentráció: pozitív visszacsatolás.
§                    Az észak-atlanti vízsüllyedés és a légköri szén-dioxid koncentráció: pozitív visszacsatolás.
§                    Vegetáció az arktikus övezetben és a légköri szén-dioxid koncentráció: negatív visszacsatolás.
§                    Az arktikus övezet fagyott talaja és a szén-dioxid koncentráció. E visszacsatolási folyamat jellegét ma még nem tudjuk egyértelműen meghatározni.